Ultrasound elastography using multiple images

Hassan Rivaz *, Emad M. Boctor, Michael A. Choti, Gregory D. Hager

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

A R T I C L E I N F O

Article history:
Received 7 March 2013
Received in revised form 20 November 2013
Accepted 25 November 2013
Available online 4 December 2013

Keywords:
Ultrasound elastography
Elasticity imaging
Strain imaging
Liver ablation
Expectation Maximization (EM)

A B S T R A C T

Displacement estimation is an essential step for ultrasound elastography and numerous techniques have been proposed to improve its quality using two frames of ultrasound RF data. This paper introduces a technique for calculating a displacement field from three (or multiple) frames of ultrasound RF data. To calculate a displacement field using three images, we first derive constraints on variations of the displacement field with time using mechanics of materials. These constraints are then used to generate a regularized cost function that incorporates amplitude similarity of three ultrasound images and displacement continuity. We optimize the cost function in an expectation maximization (EM) framework. Iteratively reweighted least squares (IRLS) is used to minimize the effect of outliers. An alternative approach for utilizing multiple images is to only consider two frames at any time and sequentially calculate the strains, which are then accumulated. We formally show that, compared to using two images or accumulating strains, the new algorithm reduces the noise and eliminates ambiguities in displacement estimation. The displacement field is used to generate strain images for quasi-static elastography. Simulation, phantom experiments and in vivo patient trials of imaging liver tumors and monitoring ablation therapy of liver cancer are presented for validation. We show that even with the challenging patient data, where it is likely to have one frame among the three that is not optimal for strain estimation, the introduction of physics-based prior as well as the simultaneous consideration of three images significantly improves the quality of strain images. Average values for strain images of two frames versus ElastMI are: 43 versus 73 for SNR (signal to noise ratio) in simulation data, 11 versus 15 for CNR (contrast to noise ratio) in phantom data, and 5.7 versus 7.3 for CNR in patient data. In addition, the improvement of ElastMI over both utilizing two images and accumulating strains is statistically significant in the patient data, with p-values of respectively 0.006 and 0.012.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Displacement or time delay estimation in ultrasound images is an essential step in numerous medical imaging tasks including the rapidly growing field of imaging the mechanical properties of tissue (Ophir et al., 1999; Greenleaf et al., 2003; Parker et al., 2005). In this work, we perform displacement estimation for quasi-static ultrasound elastography (Ophir et al., 1999), which involves deforming the tissue slowly with an external mechanical force and imaging the tissue during the deformation. More specifically, we focus on real-time freehand palpation elastography (Hall et al., 2003; Hiltawsky et al., 2001; Doyley et al., 2001; Yamakawa et al., 2003; Zahiri and Salcudean, 2006; Deprez et al., 2009; Goenezen et al., 2012) where the external force is applied by simply pressing the ultrasound probe against the tissue. Ease of use, real-time performance and providing invaluable elasticity images for diagnosis and guidance/monitoring of surgical operations are invaluable features of freehand palpation elastography.

A typical ultrasound frame rate is 20–60 fps. As a result, an entire series of ultrasound images are freely available during the tissue deformation. Multiple ultrasound images have been used before to obtain strain images of highly compressed tissue by accumulating the intermediate strain images (O’Donnell et al., 1994; Varghese et al., 1996; Lubinski et al., 1999) and to obtain persistently high quality strain images by performing weighted averaging of the strain images (Hiltawsky et al., 2001; Jiang et al., 2007, 2006; Chen et al., 2010; Foroughi et al., 2010). Accumulating and averaging strain images increases their signal to noise ratio (SNR) and contrast to noise ratio (CNR) (calculated according to Eq. (35)). However, these techniques are susceptible to drift, a problem with any sequential tracking system. We show that considering three images simultaneously to solve for displacement field significantly improves the quality of the elasticity images compared to sequentially accumulating them. Multiple images have also been used to obtain tissue non-linear parameters (Krouskop et al., 1998; Erkamp et al., 2004a; Oberai et al., 2009; Goenezen et al., 2012).
Depth calculation from a trinocular-stereo system (Ayache and Lustman, 1991; Mulligan et al., 2002; Brown et al., 2003) is a similar problem where more than two images are used to increase the accuracy and robustness of the stereo system. The third image is used to introduce additional geometric constraints and to reduce the noise in the depth estimates. Unfortunately, these geometric constraints do not hold in the elastography paradigm, and therefore these methods cannot be applied to elastography.

Fig. 1 shows two consecutive strain images calculated from three ultrasound images using the 2D analytic minimization (AM) method (Rivaz et al., 2011a). Our motivation is to utilize the similarity of these two images to calculate a low variance displacement field from three images. We derive physical constraints based on the mechanical properties of soft tissue, and incorporate them into a novel algorithm that we call ElastMI (Elastography using Multiple Images). ElastMI minimizes a cost function that incorporates data obtained from three images and exploits the mechanical constraints. Like Pellot-Barakat et al. (2004); Jiang and Hall (2006); Sumi (2008); Sumi and Sato (2008); Brusseau et al. (2008); Rivaz et al., 2008a, 2009, 2011a; McCormick et al. (2011), we use a regularized cost function that exploits tissue motion continuity to reduce the variance of the displacement estimates caused by ultrasound signal decorrelations. The cost function is optimized using an iterative algorithm based on expectation maximization (EM) (Moon, 1996). Compared to our previous work (Rivaz et al., 2011b), we present significantly more details and in-depth analysis of ElastMI. We also provide extensive results for validation and more analysis of the results.

To formally study the advantage of using three images, we assume ultrasound noise is additive Gaussian and prove that exploiting three images not only reduces the noise in the displacement estimation, but also eliminates false matches due to possible periodic patterns in the tissue. We assume an additive Gaussian noise model in ultrasound images for two main reasons. First, most real-time motion estimation techniques use different forms of sum of squared differences (SSD) as a similarity metric. This includes window-based methods and the sample based methods of 2D AM and ElastMI. The fact that these similarity metrics have been shown to give low noise displacement estimates suggests that additive Gaussian noise model is a good approximation for the true ultrasonic noise for small deformations. Second, using the additive Gaussian noise model in ultrasound images allows us to analytically obtain the noise in the estimated displacement field as a function of the image noise for three different algorithms: AM (Rivaz et al., 2011a), ElastMI, and a third method that we propose in the Appendix A.

We use simulation, phantom and in vivo patient trials to validate our results. The in vivo patient trials that we present in this work are related to imaging liver tumors and also imaging ablation lesions generated by thermal ablation. Thermal ablation is a less invasive alternative for tumor resection where the cancer tumor is coagulated at temperatures above 60 °C. To eliminate cancer recurrence, the necrosis should cover the entire tumor in addition to some safety margin around it. Currently, both guidance and monitoring of ablation are performed under ultrasound visualization. Unfortunately, many cancer tumors in liver have similar echogenicity to normal tissue and are not discernible in ultrasound images. Regarding ablation monitoring, the hyperechoic region in the ultrasound image caused by formation of gas bubbles during ablation does not represent tissue ablation and usually disappears within 1 h of ablation (Goldberg et al., 2000). To minimize the misclassification of these hyperechoic regions with ablated lesion, ultrasound elastography has been proposed for monitoring ablation: HIFU probes (high intensity focused ultrasound) (Righetti et al., 1999), radio-frequency Cool-tip probes (Valleylab/Tyco Healthcare Group, Boulder, CO) (Fahey et al., 2006; Jiang and Varghese, 2009; Jiang et al., 2010) and radio-frequency RITA probes (Rita Medical Systems, Fremont, CA) (Varghese et al., 2003, 2004; Doctor et al., 2004; Rivaz et al., 2008b) have been investigated. Electrode vibration elastography (Bharat et al., 2008; DeWall et al., 2012a) and shear wave imaging (Arnal et al., 2011) have also been used to monitor ablation. Elastography in the presence of gas bubbles is challenging because they are a major source of noise in the ultrasound signal and degrade the quality of both B-mode and strain images.

The noise associated to them is also not simply additive Gaussian and depends strongly on both the spatial location and time. We show that ElastMI generates high quality strain images in such high noise environment in three patient trials.

The contributions of this work are: (1) introducing constraints on variation of the motion fields based on similarities of strain images through time; (2) proposing ElastMI, an EM-based algorithm to solve for motion fields using three images; (3) formally proving that the ElastMI algorithm reduces displacement estimation variance, and further illustrating that with simulation, phantom and patient data, and (4) reporting clinical studies of ablation guidance/monitoring, with data collection corresponding

1 The 2D AM code is available online at www.cs.jhu.edu/~rivaz.
2 Real-time window based methods generally use SSD, cross correlation or normalized cross correlation as the similarity metric. Under certain normality conditions, it can be shown that all of these methods are maximum likelihood estimators if the ultrasound noise model can be assumed to be additive Gaussian.
to before, during and after ablation, which is to the best of our knowledge, the first such study.

2. Displacement estimation error

Assume we have a set of ultrasound frames \(f_k \), \(k = 1, \ldots, p \), each of size \(m \times n \), and let \(x = (i,j), i = 1, \ldots, m, j = 1, \ldots, n \) be a 2D vector denoting the coordinates of image samples (Fig. 2). The images are obtained during the freehand palpation of the tissue. From the original sequence \(f_k \), we pick a triple, and set \(I_1 \) as the middle image, and \(I_2 \) and \(I_3 \) as the first and third images. Let \(\mathbf{d}^k(x) = (\mathbf{a}^k(x), \mathbf{b}^k(x)) \) denote the ground truth axial and lateral displacements of the sample \(x \) between the 1st and 4th image (see Fig. 2). Note that, by choice of reference, \(\mathbf{d}^k(x) = 0 \). For simplicity, we only look at a particular A-line and also assume that the motion \(\mathbf{d}^k \) is in the axial direction. Therefore, \(\mathbf{a}^k, i = 1, \ldots, m \) denote the ground truth axial displacement of samples of the particular A-line. The subscript \(i \) shows the dependency of \(\mathbf{a}^k \) to \(x \). Assuming that ultrasound noise is additive Gaussian, the image intensity at point \(i \) is

\[
I_k(i) = \bar{I}(i - \mathbf{a}^k) + n_k(i), \quad n_k(i) \sim \mathcal{N}(0, \sigma^2), \quad k = 1, \ldots, p
\]

where \(\mathcal{N}(\mu, \sigma^2) \) denotes a Gaussian distribution with the mean \(\mu \) and variance \(\sigma^2 \), and \(\bar{I}(i) \) refers to an unknown ideal image that has no noise and no deformation. The goal of ElastMI is to estimate \(\mathbf{a}^k \), i.e. a displacement for every sample. We make two comparisons between ElastMI and companding (Chaturvedi et al., 1998): (1) in companding, the scaling of the signal is directly computed and can be used as a strain image, while ElastMI does not directly estimate scaling. (2) ElastMI allows the signal to be stretched since it allows every sample to have a different displacement. Therefore, like companding methods it can give accurate results for images with large displacements.

In Rivaz et al. (2011a), we proposed the following cost function for calculating the displacement field between \(I_1 \) and \(I_4 \):

\[
C(a_1^k, \ldots, a_m^k) = C_D + C_R,
\]

\[
C_D = \sum_{i=1}^{m} (I_1(i) - I_4(i + \mathbf{a}_i^k))^2,
\]

\[
C_R = \sum_{i=2}^{m} (a_i^k - a_{i-1}^k)^2
\]

where \(C_D \) and \(C_R \) are respectively the data and regularization terms. We have assumed pure axial motion. Replacing \(I_1 \) and \(I_4 \) with \(\bar{I} \) from Eq. (1) we have

\[
C_D(a_1^k, \ldots, a_m^k) = \sum_{i=1}^{m} (\bar{I}(i) - \bar{I}(i + \mathbf{a}_i^k))^2 + n_i(i) - n_k(i + \mathbf{a}_i^k)^2
\]

Using Taylor series to linearize \(\bar{I}(i + \mathbf{a}_i^k - \mathbf{a}_i^k) \) around \(i \) we have

\[
C_D(a_1^k, \ldots, a_m^k) = \sum_{i=1}^{m} (a_i^k - \mathbf{a}_i^k)^2 + \bar{I}_x(i) \cdot n_i(i) - n_k(i + \mathbf{a}_i^k)^2
\]

where \(\bar{I}_x \) is the derivative of the image in the axial direction (subscript \(x \) indicates that the derivative is performed in the axial direction). The value of \(\mathbf{a}^k \) that minimizes \(C_D \) can be easily found by setting the \(\partial C_D / \partial a_i^k \) to zero:

\[
a_i^k = a_i^k - \left[\bar{I}_x(i) \right]^{-1} (n_i(i) - n_k(i + \mathbf{a}_i^k))
\]

where \([\cdot]^{-1} \) denotes inversion. The expected value and variance of the \(a_i^k \) are therefore

\[
E[a_i^k] = a_i^k
\]

\[
\text{var}[a_i^k] = \left[\bar{I}_x(i) \right]^{-2} \text{var}[n_i(i) - n_k(i + \mathbf{a}_i^k)] = 2\sigma^2 \left[\bar{I}_x(i) \right]^{-2}
\]

where \(\sigma^2 \) is the noise in the images as presented in Eq. (1). These equations show that without regularization, the expected value of the displacement is the true displacement (i.e. there is no bias), and its variance increases with image noise \(\sigma \). The variance decreases where image gradient is high, i.e. at the tissue boundaries and areas where speckle is present. This is why speckle tracking methods do not work (i.e. have very high estimation variance) in cysts, which do not have speckle.

We now investigate the redundancy in consecutive strain images by looking at the mechanics of the tissue. We then introduce new priors into our displacement estimation technique based on this redundancy.

3. Deriving physical-based constraints

In this Section, we assume quasi-static motion and derive constraints on the variations of the tissue displacement with time. We use these constraints in the ElastMI algorithm, Section 4, to decrease the error in the displacement estimation.

To calculate the deformations of a continuum, mechanical characteristics of the continuum and the external forces (i.e. boundary conditions) are required. The mechanical characteristics of a continuum itself can be described by the three properties of stress–strain relationship (linear or nonlinear), homogeneity and isotropy. Linear stress–strain behavior means that if we scale the stress (or force) by a factor, the strain (or displacement) also gets scaled by the same factor, i.e. the Hooke’s law. The stress–strain relation is linear for a large range ordinary objects. Many tissue types also display linear stress–strain relation in the 0–5% strain range (Emelianov et al., 1998; Yeh et al., 2002; Greenleaf et al., 2003; Erkamp et al., 2004a,b; Hall et al., 2007, 2009; Oberai et al., 2009). Homogeneity means that the continuum has uniform mechanical properties, i.e. its properties are spatially invariant. Isotropy means that at each point, the continuum has the same properties in different directions. Muscle for example is not an isotropic material due to its fibers. For simplicity and for intuitive analysis, we only consider scalar fields and ignore anisotropy. We can therefore analyze how a continuum deforms by selecting one of these three

Fig. 2. Axial, lateral and out-of-plane directions. The coordinate system is attached to the ultrasound probe. The sample \((i,j)\) marked by \(x\) moved by \((a_i, b_j)\).
properties: linear or non-linear continuum, homogeneous or inhomogeneous continuum, and external forces that result in uniform stress or nonuniform stress (resulting in $2^3 = 8$ cases).

We hypothesize that the ratio of two strain (or displacement) images obtained at different times from the same continuum has small spatial variations (as observed in Fig. 1). To illustrate this, we show that among the 8 total cases, this ratio is spatially invariant in the five cases shown in Fig. 3. The remaining three cases all share tissue non-linearity, which we avoid by limiting the total strain to less than 5%. In this figure, image I_1 is acquired at zero compression (to simplify the figure), image I_2 after compression and image I_3 after more compression. We assume the applied pressure in I_2 and I_3 has the same profile (i.e. the two external pressure fields are the same up to a scale factor). This means that in cases (a), (c) and (e) the applied pressure is always uniform and in (b) and (d) the applied pressure has the same profile. P_1 and P_2 are two arbitrary points whose strain values are ϵ_1^1 and ϵ_1^2 and whose axial displacement values are a_1^1 and a_1^2 respectively, where $k = 2, 3$ refers to strain value at image k. We prove that in the five cases shown in Fig. 3, the ratio of the strain images and the ratio of the displacement images are spatially invariant, i.e.

$$\frac{\epsilon_1^1}{\epsilon_1^2} = \frac{\epsilon_2^1}{\epsilon_2^2} \quad \text{and} \quad \frac{a_1^1}{a_1^2} = \frac{a_2^1}{a_2^2} \quad \text{(8)}$$

An intuitive proof for this equation in the five cases shown in Fig. 3 is as following:

(a) Linear, homogeneous, uniform stress. This is the simplest case, and Eq. (8) can be proven because $\epsilon_1^1 = \epsilon_2^1$ and $\epsilon_1^2 = \epsilon_2^2$ (since the stress is uniform). The second part $\frac{a_1^1}{a_1^2} = \frac{a_2^1}{a_2^2}$ can also be simply proven by noticing that two triangles OZ_1P_1 and OZ_2P_2 are similar.

(b) Linear, homogeneous, non-uniform stress. Either the hole in the continuum or the non-uniform force applied to the top is enough to generate non uniform stress and strain fields. This case might be the hardest to prove Eq. (8). Consider the finite element analysis of the continuum, which meshes
the continuum into small parts. Since the continuum is linear, the final force–displacement equation becomes \(f = K a \) where \(f \) is the force vector applied to the boundaries, \(K \) is the stiffness matrix and \(a \) is the displacement of each node in the mesh. Let the forces when \(I_2 \) and \(I_3 \) are acquired be respectively \(f^I \) and \(f^I \), and the displacements be respectively \(a^I \) and \(a^I \). Since we have assumed the pressure keeps its profile, \(f^I \) and \(f^I \) are identical up to a scale, i.e. \(f^I = \eta f^I \). Using \(f = K a \), we have \(a^I = \eta a^I \) and therefore the second part of Eq. (8). Since the displacements are scaled version of each other, so are the strains and therefore we have the first part of Eq. (8).

(c) Linear, inhomogeneous, uniform stress. Because of linearity and uniform stress, \(s^2 = E_1 c_1^2 = E_2 c_2^2 \) and \(s^3 = E_1 c_1^3 = E_2 c_2^3 \) \((s^2 \text{ and } s^3 \text{ are the stress values corresponding respectively to } I_2 \text{ and } I_3 \text{ and are not related to } s^1 \text{ which is variance elsewhere in the paper})\). Dividing two equations gives Eq. (8). The second part \(\frac{s^2}{s^3} = \frac{c_1}{c_2} \) can be proven as following. Because both parts are linear, it can be shown that the extension of the two curves corresponding to the bottom part of the image (the dashed lines) intersect at \(a = 0 \) axis (if linearity is not met, they do not intersect on \(a = 0 \) axis). Therefore, it can be shown that \(\frac{s^2}{s^3} = \frac{c_1}{c_2} \) holds exploiting similarity relationships between the six triangles generated in the displacement–depth curve. If linearity is not held, neither part of Eq. (8) holds.

(d) Linear, inhomogeneous, non-uniform stress. Since the tissue is linear, this case can be proven by superposition using cases (b) and (c).

(e) Non-linear, homogeneous, uniform stress. The proof is the same as case (a) where linearity was not used.

Our analysis in (c) and (d) can be simply extended to an inhomogeneous medium with \(n \) homogeneous parts, which is a good approximation for most inhomogeneous tissues. Although we assumed only axial displacement and strain, Eq. (8) can be similarly proven for 2D strain and stress in the above five cases. For the remaining \(8 - 5 = 3 \) cases Eq. (8) does not hold even in the 1D case. In addition, other simplifications such as assuming strain and stress to be scalars (rather than tensors), neglecting anisotropic behavior of tissue, assuming that the pressure profile does not change from \(I_2 \) to \(I_3 \), and biological motions inside the living tissue limit the scope of Eq. (8). However many tissue types (linear or nonlinear, homogeneous or inhomogeneous and isotropic or anisotropic) combined with any applied pressure can be locally approximated with one of the above cases. Therefore, we impose the additional constraint that the ratio between two displacement fields should have limited spatial variations (instead of the more rigorous constraint that it should be spatially invariant). Let \(\eta_1 \) (which has small spatial variations) be the scaling factor at each sample \(i : d_i^1 = \eta_1 a_i^1 \). In the 2D case, the scale factor is \(\eta_i \), where \(d_i = \eta_i \times d_i^1 \) where \(\times \) denotes element-wise multiplication. In the next Section, we present the algorithm that utilizes this constraint.

4. ElastMI: elastography using multiple images

We have a set of \(p = 3 \) images \(I_k, k = 1, \ldots, 3, \) and would like to calculate the two 2D displacement fields \(d^1 = (a^1, f^1) \) and \(d^1 = (a^1, f^1) \) as described in the beginning of Section 2. We assume \(d^1 = \eta \times d^1 \) where \(\eta = (\eta_1, \eta_2) \) and \(\eta_1 \) and \(\eta_2 \) are the ratios between respectively the axial and lateral displacement images. Following the discussion in Section 3, \(d^1 \) and \(d^1 \) have to result in strain values of less than 5% so that the tissue can be approximately linear. In a freehand palpation elastography setup with ultrasound acquisition rate of 20 fps or more, taking three consecutive images as \(I_1, I_2, I_3 \) guarantees this.

Let \(\theta \) contain all the displacement unknowns \(d^1 \) and \(d^1 \). If we know \(\eta \), it is relatively easy to estimate \(\theta \) by maximizing its posterior probability. On the other hand, it is easy to estimate \(\eta \) if we have \(\theta \). Since we know neither, we iterate between the steps of estimating \(\theta \) and \(\eta \) using an Expectation Maximization (EM) framework. Our proposed algorithm, shown in Fig. 4, is as follows.

1. Find an estimate for \(\theta \) by applying the 2D AM method (Rivaz et al., 2011a) to two pairs of images \((I_1, I_2)\) and \((I_1, I_3)\) independently.
2. Find an estimate for \(\eta \) using the calculated \(\theta \) (details below).
3. Using the estimated \(\eta \), estimate \(\theta \) by maximizing its posterior probability (details below). Note that unlike the traditional EM where the likelihood of \(\theta \) is maximized, we maximize its posterior probability.
4. Iterate between 2 and 3 until convergence.

Different stopping criteria can be used in step 4, such as terminating the iteration when the changes in the displacement field or the cost function is smaller than a predefined threshold. We found that the convergence of the ElastMI algorithm is fast and iterating it only once always generates strain images with high quality and CNR; we therefore use this simple criteria. Steps 2 and 3 are elaborated below.

Calculating \(\eta \) from \(\theta \) using least squares: At each sample \((i, j)\) in the displacement field \(d_i^1, i = 1, \ldots, m; j = 1, \ldots, n \) take a window of size \(m_w \times n_w \) centered at the sample \((m_0, n_0)\) are in the axial and lateral directions respectively and both are odd numbers). Stack the axial and lateral components of \(d_{ij}^1 \) that are in the window in two vectors \(a_{ij}^1 \) and \(l_{ij}^1 \), each of length \(m_w \times n_w \). Similarly, generate \(a_{ij}^1 \) and \(l_{ij}^1 \) using \(d_{ij}^1 \). Note that since both displacement fields \(d_{ij}^1 \) and \(d_{ij}^1 \) are calculated with respect to samples on \(I_1 \), the displacements correspond to the same sample \((i, j)\). We first calculate the axial component \(\eta_{ij,a} = (\eta_{ij,a} = (\eta_{ij,a}, \eta_{ij,b})) \). Discarding the spatial information in \(a_{ij}^1 \) and \(a_{ij}^1 \), we can average the two vectors into two scalars \(a_{ij}^1 \) and \(a_{ij}^1 \) simply calculate \(\eta_{ij,a} = \frac{a_{ij}^1}{a_{ij}^1} \).

\[\text{iterate} \]

\[\text{Maximize} \]

\[P_\theta(\theta | I_1, I_2, I_3) \]

\[\text{Fig. 4. The ElastMI algorithm. The reference image } I_1 \text{ corresponds to an intermediate deformation between } I_2 \text{ and } I_3. \]

1. Axial and lateral strains are related through the Poisson’s ratio \(v \). For now we simply assume they are independent and hence we use the point-wise operation. In Section 4 we take the relation between the axial and lateral strains into account.
However, a more elegant way which also takes into account the spatial information is by calculating the least squares solution to the following over-determined problem

$$\hat{a}_j^3 \eta_{(b),a} = \hat{a}_j^1$$

(9)

which results in

$$\eta_{(b),a} = \frac{\hat{a}_j^2}{\hat{a}_j^3}$$

(10)

where superscript T denotes transpose. This is however not symmetric w.r.t. \hat{a}_j^1 and \hat{a}_j^3: if we define $\eta'_{(b),a}$ to be the least square solution to $\hat{a}_j^3 \eta'_{(b),a} = \hat{a}_j^2$, it is easy to show $\eta'_{(b),a} = 1/\eta_{(b),a}$ (Fig. 5).

A method for symmetric calculation of η is depicted in Fig. 5 where both vectors are projected into $\hat{a}_j^3 + \hat{a}_j^1$. The ratio of the two projections is η, i.e.

$$\eta_{(b),a} = \frac{\hat{a}_j^1}{\hat{a}_j^3 + \hat{a}_j^1}$$

(11)

To calculate the ratio of the lateral displacement fields $\eta_{(b),a}$, we take into account possible lateral slip of the probe, which results in a rigid-body-motion. The rigid-body-motion can be simply calculated by averaging the lateral displacement in d_i^2 and d_i^3 in the entire image $i = 1, \ldots, m$, $j = 1, \ldots, n$, and then calculating the difference between these two average lateral displacements. The lateral scaling factor $\eta_{(b),1}$ can be calculated using an equation similar to (11) where the axial displacement a_j is replaced with the lateral displacements l_i. However, we use the following approach which results in a better estimate for $\eta_{(b),a}$. The lateral strain e_i (the gradient of the lateral displacement in the lateral direction) is simply v_i, where v is an unknown Poisson’s ratio. Since v has a small dynamic range in soft tissue (Konofagou and Ophir, 1998), and since the difference between the two displacement maps d_i^2 and d_i^3 is small, we can assume that v does not vary from d_i^2 to d_i^3. Therefore, $\eta_{(b),1} = \eta_{(b),a}$. This gives better estimate for $\eta_{(b),a}$ since axial displacement estimation is more accurate (Rivaz et al., 2011a).

Calculating θ by maximizing its posterior probability. Knowing the value of the latent variable η, the posterior probability of θ can be written as

$$\Pr(\theta | l_1, l_2, l_3) \propto \Pr(l_1, l_2, l_3 | \theta) \Pr(\theta | \eta)$$

(12)

where we have ignored the normalization denominator. The data term $\Pr(l_1, l_2, l_3 | \theta)$ is the likelihood of θ parameters $l_i(\theta)$. We set the prior term $\Pr(\theta | \eta)$ to a regularization $R(\theta | \eta)$. The MAP estimate for θ is

$$\theta_{MAP} = \arg \max_{\theta} \Pr(\theta | l_1, l_2, l_3)$$

(13)

To be able to solve this equation analytically, we assume all the samples in the three images are independent and identically distributed and that their noise is Gaussian (Eq. (11)). The likelihood of θ can therefore be simply written as the product of Gaussian random variables:

$$L(\theta | l_1, l_2, l_3, \eta) = \prod_{i=1}^{m} \frac{1}{{\sqrt {2\pi \sigma^2} }} \exp \left(\frac{-(l_i(x_i) - l_i(x_i + d_i^2))^2}{2\sigma^2} \right)$$

$$\times \prod_{i=1}^{m} \frac{1}{{\sqrt {2\pi \sigma^2} }} \exp \left(\frac{-(l_i(x_i) - l_i(x_i + d_i^3))^2}{2\sigma^2} \right)$$

(14)

Note that we are calculating the displacements of the vertical columns (RF-line samples) simultaneously and therefore the multiplication is performed from 1 to m. d_i^2 can be replaced by $\eta_i^e \cdot d_i^2$. Since the prior $\Pr(\theta | \eta)$ and the likelihood function are multiplied in the posterior probability Eq. (12), we set the regularization to be Gaussian so that the posterior probability can be easily minimized:

$$\Pr(\theta | \eta) = \prod_{i=1}^{m} \frac{1}{{\sqrt {2\pi |A|^2} }} \exp \left(-(d_i^2 - d_i^2)^T A (d_i^2 - d_i^2)^T \right)$$

$$A = \text{diag}(\alpha(x,\eta), \beta(x,\eta))$$

(15)

where A is a 2×2 diagonal matrix as indicated, $|\cdot|$ denotes the determinant operator and x and β are the axial and lateral regularization weights. α and β can be dependent on η and also on the angle ϕ between a_j^1 and a_j^3 (Fig. 5), but in this work we simply set them to constant values. Inserting Eqs. (14) and (15) into Eq. (12) and taking its log followed by negation, we arrive at the cost function

$$C(\theta) = -\log \Pr(\theta | l_1, l_2, l_3) = \sum_{i=1}^{m} (l_i(x_i) - l_i(x_i + d_i^2))^2$$

$$+ \sum_{i=1}^{m} (l_i(x_i) - l_i(x_i + \eta_i \cdot d_i^2))^2$$

$$+ \sum_{i=1}^{m} (d_i^2 - d_i^2)^T A (d_i^2 - d_i^2) + f(A, \sigma^2)$$

(16)

where $f(A, \sigma^2)$ contains all the terms that do not have d and therefore can be ignored in finding the optimum d value. We can now linearize $l_2(x_i + d_i^2)$ and $l_3(x_i + \eta_i \cdot d_i^2)$ respectively around $x_i + d_i^{2\text{AM}}$ and $x_i + \eta_i \cdot d_i^{2\text{AM}}$ where $d_i^{2\text{AM}}$ is an estimate value for d_i^2, known by comparing l_1 and l_2 using 2D AM. This approach, however, is not symmetric and does not take d_i^2 into account as the initial estimate (although d_i^2 is used to estimate η_i). A symmetric initial estimate for d_i^2 and d_i^3 is

$$d_i^2 = \frac{\eta_i \cdot d_i^3 + d_i^2}{2\eta_i}$$

$$d_i^3 = \frac{\eta_i \cdot d_i^3 + d_i^2}{2\eta_i}$$

(17)

Note that we have only used η_i since we have assumed $\eta_{ij} = \eta_{ia}$. We have also dropped the subscript j since the cost function C is defined for a specific A-line at each time. Taylor expansion can now be used to linearize $l_2(x_i + d_i^2)$ and $l_3(x_i + \eta_i \cdot d_i^2)$ in Eq. (16) respectively around d_i^2 around d_i^3:

$$C(\theta) = \sum_{i=1}^{m} \left(\frac{l_i(x_i) - l_i(x_i + d_i^2 - \Delta d_i^2 \nabla l_i (x_i + d_i^2))^2}{2\Delta d_i^2} \right)^2$$

$$+ \sum_{i=1}^{m} \left(\frac{l_i(x_i) - l_i(x_i + \eta_i d_i^2 - \Delta \eta_i \nabla l_i (x_i + \eta_i d_i^2))^2}{2\Delta \eta_i} \right)^2$$

$$+ \sum_{i=1}^{m} (d_i^2 - d_i^2)^T A (d_i^2 - d_i^2) + f(A, \sigma^2)$$

(18)
where $\Delta d_i^2 = d_i^2 - \bar{d}_i^2$. Setting the derivative of C w.r.t. the axial ($\Delta d_i^2 = \Delta d_i^2$) and lateral ($\Delta d_i^2 = \Delta d_i^2$) components of Δd_i^2 for $i = 1, \ldots, m$ to zero and stacking the $2m$ unknowns in $\Delta d^2 = [\Delta d_1^2, \Delta d_2^2, \ldots, \Delta d_m^2]$ and the $2m$ initial estimates in $d^2 = [\bar{d}_1^2, \bar{d}_2^2, \ldots, \bar{d}_m^2]$, we obtain the linear system of size $2m$:

$$
(I + D)\Delta d^2 = r - Dd^2, \quad D = \begin{bmatrix}
0 & -\alpha & 0 & 0 & \cdots & 0 \\
\beta & 0 & -\beta & 0 & \cdots & 0 \\
-\alpha & 2\beta & 0 & -\alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -\alpha & 0 & \beta \\
0 & 0 & \cdots & 0 & -\beta & 0
\end{bmatrix},
$$

(19)

where I is a symmetric tridiagonal matrix of size $2m \times 2m$ with 2×2 matrices I_i in its diagonal:

$$
I_i = \text{diag}(I_{2,i} \ldots I_{2,m}),(m),
$$

(20)

$\text{diag}(I_{2,i}) = \left[\begin{array}{cc}
I_{2,i}^2 + \eta_i^2\sigma_i^2 & \eta_i^2\sigma_i^2 \varepsilon_{12,i} \\
\eta_i^2\sigma_i^2 & I_{2,i}^2 + \eta_i^2\sigma_i^2
\end{array} \right],
$$

where η_i^2 and σ_i^2 are calculated respectively at $(x_i + \bar{d}_i^2)$ and at $(x_i + \eta_i, \bar{d}_i^2)$, superscript i indicates derivative and subscript a and l determine whether the derivation is in the axial or lateral direction, and a is a vector of length $2m$ with elements:

$$
i \text{odd}: \quad r_i = I_{2,i}(x_i + \bar{d}_i^2)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)] + \eta_i \cdot I_{1,i}(x_i + \bar{d}_i^2)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)]$$

$$
\text{even}: \quad r_i = I_{2,i}(x_i + \bar{d}_i^2)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)] + \eta_i \cdot I_{1,i}(x_i + \bar{d}_i^2)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)]
$$

(21)

The inverse gradient estimation method Rivaz et al. (2011a) can be used to make the method more computationally efficient: all the derivatives of I_2 at $(x_i + \bar{d}_i^2)$ and derivatives of I_2 at $(x_i + \eta_i, \bar{d}_i^2)$ will be simply replaced with the derivatives of I_1 at x_i. With this modification, Eq. (20) becomes

$$
\begin{array}{c}
I_2(i) = \frac{(1 + \eta_i^2\sigma_i^2)I_{2,i}^2}{(1 + \eta_i^2\sigma_i^2)I_{2,i}^2 + \eta_i^2\sigma_i^2} \\
I_1(i) = \frac{(1 + \eta_i^2\sigma_i^2)I_{1,i}^2}{(1 + \eta_i^2\sigma_i^2)I_{2,i}^2 + \eta_i^2\sigma_i^2}
\end{array}
$$

(22)

and Eq. (21) becomes

$$
i \text{odd}: \quad r_i = \bar{r}_i(x_i)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)] + \eta_i \cdot \bar{r}_i(x_i)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)]$$

$$
\text{even}: \quad r_i = \bar{r}_i(x_i)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)] + \eta_i \cdot \bar{r}_i(x_i)[I_1(x_i) - I_2(x_i + \bar{d}_i^2)]
$$

(23)

We minimize the effect of outliers via iterative reweighted least squares (IRLS) by giving a small weight to the outliers. Each image pair in Eq. (18) is checked independently, i.e. for the same sample i, two different weights $w_{12,i}$ and $w_{13,i}$ are used:

$$
C(d) = \sum_{i=1}^{m} w_{12,i}(I_1(x_i) - I_2(x_i + \bar{d}_i^2) - \Delta d_i^2 \nabla I_2(x_i + \bar{d}_i^2))^2 + \sum_{i=1}^{m} w_{13,i}(I_1(x_i) - I_3(x_i + \eta_i \bar{d}_i^2) - \eta_i \Delta d_i^2 \nabla I_3(x_i + \eta_i \bar{d}_i^2))^2
$$

$$
+ \sum_{i=1}^{m} (d_i^2 - \bar{d}_i^2)^T A(d_i^2 - \bar{d}_i^2) + f(A, \sigma^2)
$$

(24)

where $w_{12,i}$ and $w_{13,i}$ are Huber (Hager and Belhumeur, 1998; Huber, 1997) weights and are calculated as:

$$
w_{12,i} = \frac{I_1(x_i) - I_2(x_i + \bar{d}_i^2)}{(I_1(x_i) - I_2(x_i + \bar{d}_i^2))^2 + \eta_i^2 + 1}$$

$$
w_{13,i} = \frac{I_1(x_i) - I_3(x_i + \eta_i \bar{d}_i^2)}{(I_1(x_i) - I_3(x_i + \eta_i \bar{d}_i^2))^2 + \eta_i^2 + 1}
$$

$$
\frac{1}{|r_i| < T} \quad \frac{1}{|r_i| > T}
$$

(25)

where T is a tunable parameter which determines the residual level for which the sample can be treated as outlier. A small T will treat many samples as outliers. With these new weights, Eq. (19) still holds with the following modifications:

$$
I_2(i) = \left[\begin{array}{cc}
(I_{2,i} + w_{13,i}\eta_i \bar{d}_i^2) & I_{2,i}^2 + (w_{13,i}\eta_i \bar{d}_i^2)^2 \\
I_{1,i}^2 & (I_{2,i} + w_{13,i}\eta_i \bar{d}_i^2)^2
\end{array} \right]
$$

(26)

and Eq. (21) becomes

$$
\begin{array}{c}
I_2(i) = \left[\begin{array}{cc}
I_{2,i}^2 + (w_{13,i}\eta_i \bar{d}_i^2)^2 & I_{2,i}^2 + (w_{13,i}\eta_i \bar{d}_i^2)^2 \\
I_{1,i}^2 & (I_{2,i} + w_{13,i}\eta_i \bar{d}_i^2)^2
\end{array} \right]^{-1} \left[\begin{array}{c}
(I_1(x_i) - I_2(x_i + \bar{d}_i^2)) \\
(I_1(x_i) - I_3(x_i + \eta_i \bar{d}_i^2))
\end{array} \right]
\end{array}
$$

(27)

To obtain a displacement field from three images using the ElastMI algorithm, Eq. (19) – with parameters defined in Eqs. (25) and (26) – is solved.

In the next two Sections we show that exploiting the third image reduces displacement variance and eliminates ambiguity.

4.1. Reducing variance in displacement estimation

Similar to Section 2, we assume the motion is only in the axial direction. Adding the similarity metric between images 1 and 2 and 1 and 3 we have

$$
C_0(a_1^2, \ldots, a_m^2, \eta_1 \ldots \eta_m) = \sum_{i=1}^{m} (I_1(i) - I_2(i + a_i^2))^2 + \sum_{i=1}^{m} (I_1(i) - I_3(i + \eta_i a_i^2))^2
$$

(28)

and using the noise model of Eq. (1) we arrive at

$$
C_0(a_1^2, \ldots, a_m^2, \eta_1 \ldots \eta_m) = \sum_{i=1}^{m} (I_1(i) - I_i(i + a_i^2 - \bar{a}_i^2))^2 + \sum_{i=1}^{m} (I_1(i) - I_i(i + \eta_i a_i^2 - \eta_i \bar{a}_i^2))^2 + \sum_{i=1}^{m} (I_1(i) - I_i(i + \eta_i a_i^2))^2
$$

(29)

The displacement can now be estimated by linearizing $i(i + a_i^2 - \bar{a}_i^2)$ and $i(i + \eta_i a_i^2 - \eta_i \bar{a}_i^2)$ around i and minimizing C_0: $a_i^2 = \bar{a}_i^2 - \bar{a}_i^2[I_i(i) - I_i(i + \eta_i a_i^2 + \eta_i \bar{a}_i^2)]/\eta_i^2 + 1$

(30)

and therefore

$$
\text{var}[a_i^2] = \sigma^2[I_i(i) - I_i(i + \eta_i a_i^2 + \eta_i \bar{a}_i^2)]/(\eta_i^2 + 1)
$$

(31)
Let's consider a case where \(\eta_1 = -1 \), which indicates that the deformation from \(I_1 \) to \(I_2 \) is equal to the negative of the deformation from \(I_1 \) to \(I_3 \) (i.e., one is compression and the other one is extension). Setting \(\eta = -1 \) we have \(\text{var}(a_i^2) = 0.5\sigma^2 \left(\nabla^2 \right)^{-2} \), which is 1/4th of the \(\text{var}(a_i^2) \) when only two images are utilized (Eq. (7)). This reduction in the noise is a result of using three images and also incorporating the prior that the displacement fields at different instances of the tissue deformation are not independent. Please note that in our formulation all images are compared to image 1, so that ElastMI formulation can be extended to more than three images. However, in our implementation we compare images with the middle image, i.e. we compare \(I_1 \) with \(I_2 \), and \(I_2 \) with \(I_3 \). Therefore, since the ultrasound frame rate is much higher than the hand-held palpation frequency, \(\eta_i \) is negative.

It is important to note that this equation does not provide an exact comparison between ElastMI and AM. It assumes zero regularization, while the regularization terms in both AM and ElastMI methods significantly reduce the displacement estimation variance.

By way of comparison, we propose a method in the Appendix for calculating two displacement fields from three ultrasound RF data frames. Unlike ElastMI, this method does not impose constraints based on mechanics of materials. Instead, it uses natural constraints among the three displacement fields defined by the three images. We show that this method does not decrease the variance of displacement estimation.

4.2. Eliminating ambiguity in displacement estimation

Ambiguity has been reported before as a source of large errors in the displacement estimation (Hall et al., 2003; Viola and Walker, 2005). Periodic ultrasound patterns happen if the tissue scatterers are organized regularly on a scale comparable to ultrasound wavelength, such as the lobules of the liver and the portal triads (Fellingham and Sommer, 1983; Varghese et al., 1994). We show that an ambiguity in displacement estimation using two images can be resolved with three images. Assume that the ground truth image \(I \) of Eq. (1) has the same intensity at \(i \) and at \(i + \tau \), i.e.

\[
I_k(i) = I(i - \hat{d}^k_i) + n_k(i), \quad k = 1, 2, 3, \quad \hat{I}(i) = I(i + \tau)
\]

(32)

where \(n_k(i) \) is Gaussian noise as defined in Eq. (1). Eq. (3) now can be written as

\[
C_D = \sum_{i=1}^{m} \left(\hat{I}(i) - \hat{I}(i + \tau + \hat{d}^k_i - \hat{d}^m_i - \tau) + n_k(i) - n_k(i + \tau) \right)^2
\]

(33)

where we have added and subtracted \(\tau \) to the argument of \(I(i + \hat{d}^k_i - \hat{d}^m_i) \). Now it can be seen that \(C_D \) has two local minima at \(\hat{d}^k_i = \hat{d}^m_i \) and at \(\hat{d}^k_i = \hat{d}^m_i + \tau \). In addition, the expected value of \(C_D \) at both local minima is equal:

\[
\mathbb{E}[C_D(\hat{d}^1_i, \ldots, \hat{d}^m_i)] = \mathbb{E}[C_D(\hat{d}^1_i + \tau, \ldots, \hat{d}^m_i + \tau)] = 2m\sigma^2
\]

(34)

where \(\sigma^2 \) is the variance from Eq. (1). Therefore, the false match \(\hat{d}^k_i + \tau \) cannot be eliminated. Now assume that we have three images \(I_1, I_2 \) and \(I_3 \) for displacement estimation. Similar to the case for two images, Eq. (28) can be modified by adding and subtracting \(\tau \) to \(i + \hat{d}^k_i - \hat{d}^m_i \):

![Fig. 6](image_url) Eliminating ambiguity with three images. Left shows that it is impossible with two images to differentiate true displacement from false displacement when the underlying ultrasound image is periodic. The O and X marks can both be the match of the O in the top image. Right shows the addition of the third image (in the bottom) disambiguates the false displacement from the true displacement. Here, the X cannot be the match anymore since in the third image it corresponds to a different intensity value. \(\eta \) is approximately 1.5.

![Fig. 7](image_url) 8 simulated ultrasound image frames of a uniform phantom. The percentile under each frame shows the value of the compression \(\eta \) as defined in Eq. (7). We set \(I_1 \) and \(I_2 \) to \(F_1 \) and \(F_2 \) as shown and one of \(F_1 \) to \(F_6 \) frames as \(I_3 \), resulting in different \(\eta \) values shown at the bottom. Note that we set the reference image \(I_1 \) such that its deformation is between \(I_2 \) and \(I_3 \).
at the incorrect match. Fig. 6 shows how with two periodic images it is not possible to estimate the strain. We then applied a Kalman filter in the displacement from the false displacement (\(\hat{a}^2 + \tau\), marked with a cross) since \(|l_1(i) - l_2(i + \hat{a}^2)|^2\) and \(|l_1(i) - l_2(i + \hat{a}^2 + \tau)|^2\) are in average (i.e. ignoring the noise) equal. However, by adding a third image it is possible to differentiate the true displacement \(\hat{a}^2\) from the false displacement \(\hat{a}^2 + \tau\) since \(|l_1(i) - l_2(i + \hat{a}^2 + \tau)|^2\) is in average smaller than \(|l_1(i) - l_2(i + \hat{a}^2)|^2 + |l_1(i) - l_2(i + \eta \hat{a}^2)|^2|\) and \(|l_1(i) - l_2(i + \hat{a}^2 + \tau)|^2\).

5. Results

We use data from simulation, phantom experiments and patient trials to validate the performance of the ElastMI algorithm. All the ElastMI results are obtained using Eq. (19) with parameters defined in Eqs. (25) and (26). The ElastMI algorithm is currently implemented in Matlab mex functions and runs in real-time on a 3.6 GHz single core processor. In [Rivaz et al., 2011a], we proposed to estimate the strain from the displacement as follows: we first applied a least square filtering in the axial direction to find an estimate for the strain. We then applied a Kalman filter in the lateral direction to remove the noise, while preventing blurring.
We use the same technique here, with 50 samples in the axial direction to perform the least square fitting.

We compare ElastMI against the 2D AM strain and accumulated strain images. Two approaches are usually taken to utilize multiple images: (1) Displacements are accumulated to increase the displacement amplitudes, i.e. the Lagrangian particle tracking (e.g. for cardiac strain imaging over the cardiac cycle (Shi et al., 2008; Ma and Varghese, 2012)), and (2) strain images are averaged to reduce noise. In Lagrangian particle tracking, one should note that the location of a particle keeps changing in the image sequence, and therefore appropriate displacements must be accumulated. In ElastMI, both displacements are calculated with respect to the one reference image, i.e. \(I_1 \). Therefore, we do not need to perform any Lagrangian tracking and the displacements are not accumulated in ElastMI.

Fig. 9. Box plot of the variance of strain accumulation and ElastMI, compared to 2D AM. A ratio of smaller than 1 indicates a reduction in the variance achieved with using 3 frames.

We use the same technique here, with 50 samples in the axial direction to perform the least square fitting.

We compare ElastMI against the 2D AM strain and accumulated strain images. Two approaches are usually taken to utilize multiple images: (1) Displacements are accumulated to increase the

Fig. 10. Axial and lateral strain images of the phantom with the target and background windows (see Table 1 for SNR and CNR values). All axes are in mm. The hard lesion is spherical and has a diameter of 1 cm. The axial and lateral strain scales are identical for all images and are shown in (a): the maximum axial and lateral strains are respectively 7% and 2%. The difference between different methods is most visible at a 2x zoom.

<table>
<thead>
<tr>
<th></th>
<th>B-mode</th>
<th>2D AM</th>
<th>Accumulation</th>
<th>ElastMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR Vert.</td>
<td>2.6</td>
<td>2.9</td>
<td>11.1</td>
<td>12.0</td>
</tr>
<tr>
<td>SNR Horiz.</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td>6.3</td>
</tr>
<tr>
<td>SNR improv. %</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNR improv. %</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>SNR improv. %</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>CNR</td>
<td>0.2</td>
<td>0.5</td>
<td>8.5</td>
<td>3.0</td>
</tr>
<tr>
<td>CNR improv. %</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CNR improv. %</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CNR improv. %</td>
<td>-</td>
<td>-</td>
<td>31</td>
<td>13</td>
</tr>
</tbody>
</table>

Fig. 11. The CNR values of the lesion in axial strain images computed over 10 sets of ultrasound frames.
In all our results, we map the strain images of 2D AM, accumulated strain and ElastMI to the same range, so that they can be easily compared.

5.1. Simulation results

Field II (Jensen, 1996) and ABAQUS (Providence, RI) software are used for ultrasound simulation and for finite element simulation. The specifications of the ultrasound probe and the uniform phantom are in Rivaz et al. (2011a). 8 ultrasound image frames are simulated at different compression levels from 0% to 4%, as shown in Fig. 7. We set frame F7 as \(I_1 \) and frame F8 as \(I_2 \) as shown in the figure. \(I_3 \) is set to one of the other frames, resulting in different \(\eta \) values shown in the bottom of Fig. 7.

The axial and lateral strain images obtained from F7 and F8 using 2D AM are shown in Fig. 8a. Using the three frames of F5, F7 and F8, we calculate strains between consecutive frames, add the strains, and divide it by two to have a 1% strain image similar to (a). The result is in (b). The ElastMI results using the same three frames is shown in (c). Note the SNR values shown on top of each strain image, and how it increases from 2D AM to accumulated strain to ElastMI. The axial and lateral strains in (a–c) have the same intensity scale (as shown in (d)) to ease comparison.

We repeat this experiment by setting \(I_3 \) to frames F1 through F6, and compute the ratio of the noise compared to the 2D AM strain. The result is shown in Fig. 8e. Both ElastMI and accumulation of strain decrease the variance. However, this reduction is significantly more in ElastMI because it incorporates a powerful physical constraint into its cost function and considers all three images to estimate the displacement estimates.

Finally, we generate 10 different realizations of frame F1 in Fig. 7 with 10 different simulated phantoms, and compress each phantom to obtain 10 instances of frames F3, F5, F7 and F8. We then repeat the experiment of Fig. 8e for each phantom. Fig. 9 shows the results. Please note that we do not perform Lagrangian speckle tracking; we rather average the strain images to get the accumulated strain values. We see that using three images, both strain accumulation and ElastMI result in a reduction in the variance. Also, the variability in the lateral strain results in (b) is generally more than that of the axial strain images in (a). This can be attributed to the lower resolution in the lateral direction, and the lack of phase information in this direction. In both axial and lateral
strains, ElastMI improves the results of strain accumulation by a statistically significant amount ($p < 0.00002$ for paired t-tests). This improvement is mainly due to imposing the physics-based prior in ElastMI.

5.2. Phantom results

RF data is acquired from an Antares Siemens system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear array at a sampling rate of 40 MHz. An elastography phantom (CIRS elastography phantom, Norfolk, VA) is compressed axially in two steps using a linear stage, each step 0.1 in. The Young’s elasticity modulus of the background and the lesion under compression are respectively 33 kPa and 56 kPa. Three RF frames are acquired corresponding to before compression (F1), after the first compression step (F2) and after the second compression step (F3). I_1, I_2, and I_3 are respectively set to F2, F1 and F3. Two displacement maps, one between F1 and F2, and the second between F2 and F3 are estimated with 2D AM. They are then added to give the F1 to F3 displacement map. The unitless metrics signal to noise ratio (SNR) and contrast to noise ratio (CNR) are calculated to compare 2D AM, accumulated and ElastMI strains:

$$\text{CNR} = \frac{C}{N} = \sqrt{\frac{2(\bar{s}_b - \bar{s}_t)^2}{\sigma_t^2 + \sigma_b^2}}; \quad \text{SNR} = \frac{\bar{s}}{\sigma}$$

where \bar{s}_t and \bar{s}_b are the spatial strain average of the target and background, σ_t^2 and σ_b^2 are the spatial strain variance of the target and background, and \bar{s} and σ are the spatial average and variance of a window in the strain image respectively. Fig. 10 shows the axial and lateral strain images along with the target and background windows used for SNR and CNR calculation. The SNR is only calculated for the background window. The results are in Table 1. In comparison with 2D AM, both accumulating strain and ElastMI improve the SNR and CNR. However, the improvement of ElastMI is significantly more which is due to the utilization of our novel mechanical prior and the EM optimization technique.

Using the same ultrasound machine and probe, we collect RF data from freehand palpation of a CIRS breast elastography phantom (CIRS, Norfolk, VA). The lesion is three times stiffer than the background. We select 10 set of ultrasound frames with 3 frames...
The CNR of the strain images of Figs. 12–14. P1, P2 and P3 respectively correspond to patients 1, 2 and 3. Maximum values are in bold font.

<table>
<thead>
<tr>
<th></th>
<th>Before ablation</th>
<th>During ablation</th>
<th>After ablation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2D AM</td>
<td>Accum.</td>
<td>ElastMI</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>8.2</td>
<td>9.2</td>
<td>12.3</td>
</tr>
<tr>
<td>Average</td>
<td>10.2</td>
<td>9.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

5.3. Clinical study

RF data is acquired from ablation therapy of three patients with liver cancer using an Antares Siemens system (Issaquah, WA) ultrasound machine. The patients underwent open surgical radiofrequency (RF) thermal ablation for primary or secondary liver cancer. All patients enrolled in the study had unresectable disease and were candidates for RF ablation following review at our institutional multidisciplinary conference. Patients with cirrhosis or suboptimal tumor location were excluded from the study. All patients provided informed consent as part of the protocol, which was approved by the institutional review board. The RF data we acquired is as follows: for the first patient only after ablation, for the second patient before and after ablation, and for the third patient before, during and after ablation. A VF10-5 linear array at the center frequency of 6.67 MHz with a sampling rate of 40 MHz is used for RF data acquisition. The ablation is administered using the RITA Model 1500 XRF generator (Rita Medical Systems, Fremont, CA). Tissue is simply compressed freehand at a frequency of approximately 1 compression per 2 s with the ultrasound probe without any attachment and the strain images are generated offline.

The strain–stress curve of liver is approximately linear for a large strain range (Yeh et al., 2002), and therefore, the assumption that the tissue should remain linear in the three images of ElastMI is comfortably met. In addition, higher graded fibrotic liver tissue is about four times stiffer than lower graded fibrotic tissue (DeWall et al., 2012b), and hence, elastography imaging can potentially be used to estimate the fibrotic grade.

The strain images obtained with 2D AM, accumulation of consecutive strains and the ElastMI algorithm are shown in Figs. 12, 13 and 14. Images before ablation show the tumor. Images corresponding to during ablation (second row, Fig. 14) are acquired approximately 3 min after start of the ablation while the ablation device is temporarily shut down, but remains in tissue, for ultrasound data acquisition, but is still in the liver tissue. The prongs of the ablation probe are visible in the US image of the second row and are pointed to by blue arrows. Images after ablation show the ablated lesion and are acquired approximately 3 min after the ablation device is retracted from the tissue.

The severe attenuation in the B-mode image of Fig. 12 has not degraded the strain images. The region with low strain in Fig. 14d–f is caused by both ablation and by the ablation probe’s prongs holding the tissue, as also suggested by Varghese et al. (2004).

CNR values are calculated between target and background windows, each of size 10 mm × 10 mm. The target window is inside the tumor (before ablation) or the ablation lesion, and the background window is outside. Table 2 shows the results. ElastMI significantly improves all the CNR values. The average values for before and after ablation are shown in the last row. The average CNR over all values of this table are 5.7 for 2D AM, 5.7 for accumulating strains, and 7.3 for ElastMI. The improvements of ElastMI over both 2D AM and strain accumulation are statistically significant, with paired t-test p-values of respectively 0.006 and 0.012.

Accumulating strain images generally improves the results. However, it tends to blur sharp boundaries and lower the contrast in our experience; the tumor/ablation lesion is significantly “less dark” in Figs. 12 and 13. This is an inherent result of averaging/accumulating strain images. Another reason lies in the fact that as we add consecutive strains, the chances of having incorrect displacement estimates at any part of the image increases. The ElastMI algorithm however utilizes additional physics-based priors and robust-to-outlier IRLS method to solve for displacement estimation using three images simultaneously. We see that these features enable it to continue generating low noise and sharp elasticity images in the challenging data of patient trials.

6. Discussions and conclusion

In this work, we focused on utilizing three images to calculate low variance displacement fields. We first derived constraints on variation of displacement fields with time using concepts from mechanics of materials. We then proposed ElastMI, an EM based algorithm that uses these constraints. We showed that ElastMI outperforms our previous algorithm AM. We corroborated these results using simulation, phantom and in vivo experiments.

The advantages of ElastMI over accumulating displacement fields of the intermediate images are as follows. First, by displacement estimation using two images only a fraction of the available information is utilized, making tracking prone to signal decorrelation and false matches. ElastMI uses all the three images in a group-wise scheme to find displacement fields. Second, the physics-based prior substantially reduces the estimation variance as shown formally and using simulation and experimental data. Finally, by accumulating displacement fields, errors are accumulated. This is in fact a well known problem of any sequential tracking or stereo system (Brown et al., 2003). Its disadvantage, however, is that it is computationally more expensive. In our implementation, ElastMI takes 0.2 s to generate strain images of size 1000 × 100 on a single core 3.8 GHz P4 CPU, compared to 0.04 s of 2D AM and 0.08 s for accumulating strains.

Both ElastMI and 2D AM assume displacement fields are continuous. This assumption breaks for vascular strain imaging where the two vessel walls can move in opposite directions (Shi and Varghese, 2007; Shi et al., 2008). This issue also has been addressed in model-based elasticity reconstruction problems by assigning soft and hard constraints (Le Floc’h et al., 2009; Richards and Doyley, 2011). Therefore an interesting avenue for future work would be to relax the displacement continuity in ElastMI for image regions where 2D AM predicts high variability in the direction of displacements. Discontinuity preserving ElastMI can then be used in noninvasive vascular elastography applications (Maurice et al., 2004, 2007; Shi and Varghese, 2007; Shi et al., 2008; Hansen et al.,
Accumulating strains significantly outperforms 2D AM in the simulation and phantom experiments. This improvement, however, mostly diminishes in the patient trials. This is mainly due to the fact that in the challenging freehand intra-operative settings, it is hard to find three “good” frames for strain computations. Therefore, one of the strain images can be noisy or blurry, and adversely affect the accumulated strain. ElastMI, however, does not suffer from this problem for two main reasons. First, the additional prior, and second, simultaneous estimation of displacement fields from three images using robust estimation methods.

We proved that for simple additive Gaussian noise, ElastMI significantly reduces the estimation noise. For ablation monitoring, however, the nature of the noise changes dramatically both with time and location because of the gas bubbles. Nevertheless, our results on the patient data shows that ElastMI performs well in the presence of such complex noise.

In the analysis of Section 3, we assumed quasi-static deformation, so that the dynamics of the continuum can be ignored. This assumption is generally valid for freehand palpation elastography. In other methods of measuring tissue elastic properties where the excitation is dynamic (Parker et al., 2005; Greenleaf et al., 2003), Kalman filters can be used to fuse the noisy displacement estimates and tissue dynamics models.

For noise analysis, we assumed additive Gaussian noise, which allowed us to analytically derive estimates for measurement variance. More accurate techniques for motion estimation have been proposed based on more realistic models of ultrasound noise (Insana et al., 2000; Maurice et al., 2007). In the future, we will consider more realistic speckle statistics, such as the models in Rivaz et al., 2007a,b, 2010.

As suggested by Eq. (15), the regularization can be a function of the two estimated displacement estimations. For example, \(\phi = 0 \) or \(\phi = \pi \) indicate that the two estimated displacement fields are in fact similar up to a scale factor, which is what we assume in this work. However, \(\phi \approx \pm \pi/2 \) indicates that the two displacements are not similar, meaning that either one of the displacement estimates is incorrect or that the tissue is highly nonlinear. Future work will exploit \(\phi \) in the regularization term (Eq. (15)).

In the future, we will also extend the framework presented in this paper for calculating the displacement field from three images to the more general case where more than three images are utilized. Finally, direct estimation of the strain from ultrasound frames (Brusseau et al., 2008) will also be incorporated into ElastMI.

Acknowledgments

Hassan Rivaz was supported by the DoD Predoctoral Traineeship Award and by the Advanced Simulation Fellowship from the Link Foundation. We thank anonymous reviewers for their constructive feedback, Dr. Stanislav Emelianov for his comments, Dr. Pezhammer Foroughi, Ioana Fleming and Mark van Vledder for valuable discussions, and Shelby Brunke for technical support. We also thank Siemens for providing us with an ultrasound machine with research interface, and the Hopkins Radiology department for intramural funds.

Appendix A

We now show that the additional constraint of Eq. (8) is critical in reducing the error in displacement estimation. Consider 3 images \(I_1, I_2 \) and \(I_3 \) from the set of \(p \) images (Fig. A.1). Let \(d_{12}, d_{23} \) and \(d_{31} \) be the displacement between \(I_1, I_2 \), between \(I_2, I_3 \) and between \(I_3, I_1 \) (using the notation of the previous Section, \(d_{12} = d^1 \) and \(d_{31} = -d^3 \)). These three displacements are not independent since \(d_{12} + d_{23} + d_{31} = 0 \). The axial component of this equation gives \(a_{12} + a_{23} + a_{31} = 0 \), which allows us to replace \(a_{23} \) with \(a_{12} = a^2 \) and \(a_{31} = -a^2 \):

\[
C_0(\alpha_{1}^1, \ldots, \alpha_{m}^1; \alpha_{1}^2, \ldots, \alpha_{m}^2) = \sum_{i=1}^{m} (I_1(i) - I_2(i + a_{1}^2))^2 + \sum_{i=1}^{m} (I_2(i) - I_3(i + a_{1}^2))^2 + \sum_{i=1}^{m} (I_3(i + a_{1}^2) - I_1(i + a_{1}^2))^2
\]

(A.1)
where we have modified the data term of the cost function by adding the intensity similarity between each two of the three images. Note that this equation is for the displacements of any three images and the images need not be consecutive. Using the noise model of Eq. (1) and linearizing I_i and I_j around i we have

$$C_0(\alpha_1^2, \ldots, \alpha_3^2, \alpha_4^2, \ldots, \alpha_{32}^2) = \sum_{i=1}^9 \left(-\alpha_1^2 - \tilde{\alpha}_1^2 - \tilde{\alpha}_2^2 - \tilde{\alpha}_3^2 \right)^2 + \sum_{i=1}^m \left(-\alpha_1^2 - \tilde{\alpha}_1^2 - \tilde{\alpha}_2^2 - \tilde{\alpha}_3^2 \right)^2 + \sum_{i=1}^n \left(-\alpha_1^2 - \tilde{\alpha}_1^2 - \tilde{\alpha}_2^2 - \tilde{\alpha}_3^2 \right)^2$$

(A.2)

The optimum value of α_1^2 and α_2^2 will minimize C_0. Setting $\partial C_0 / \partial \alpha_1^2 = 0$ and $\partial C_0 / \partial \alpha_2^2 = 0$ will result in a coupled 2-equations-2 unknowns linear system. Solving the set of equations will give

$$\alpha_1^2 = \tilde{\alpha}_1^2 - \left[\left(n_1(1) - n_2(i + \alpha_1^2) \right) a_1 \right]$$

$$= \alpha_1^3 - \left[\left(n_1(1) - n_3(i + \alpha_1^2) \right) a_1 \right]$$

(A.3)

which are the same as Eq. (5). Interestingly, the solution of the coupled linear system shows that α_1^2 does not depend on n_1, and similarly α_2^2 does not depend on n_3. Therefore, the implicit constraint of $\alpha_2 + \alpha_3 + \alpha_4 = 0$ will not reduce the noise in the displacement estimation. In the other words, the third term in the RHS of Eq. (A.1), i.e. $\sum_{i=1}^m \left(\tilde{\alpha}_1^2 + \alpha_1^2 \right) - \tilde{\alpha}_1^2 + \alpha_1^2$ will add no information to the cost function.

We have developed and implemented an algorithm that enforces the implicit constraint of this Appendix to calculate two motion fields from three images. Our simulation and experimental results showed that, compared to AM, this method has negligible impact on bias, variance, SNR and CNR of the calculated motion field and strain image as predicted by our Gaussian noise model. We do not present these results here because of space limitations.

References

